A Machine Vision System Using Circular Autoregressive Models for Rapid Recognition of Salmonella typhimurium

Información de la publicación

Información de la publicación
Tipo de publicación



Investigación y estudios

Medio de publicación

Impreso: Revista de divulgación científica


Abstract. The objective of this research was to develop a machine vision system using image processing and statistical modeling techniques to identify and enumerate bacteria on slides containing Salmonella typhimurium. Pictures of bacterial cells were acquired with a CCD camera attached to a motorized fluorescence microscope. A shape boundary modeling technique, based on the use of circular autoregressive model parameters, was used. A feature weighting classifier was trained with ten images belonging to each shape class (rod shape and circle shape). In order to enhance the discrimination of circular shapes, a size range was added to the recognition algorithm. Experimental results showed that the model parameters could be used as descriptors of shape boundaries detected in digitized binary images of bacterial cells. The introduction of the rotated coordinate method and the circular size restriction, reduced the differences between automated and manual recognition/enumeration from 7% to less than 1%. The computer analyzed each image in approximately 5 s (a total of 2 h including sample preparation), while the bacteriologist spent an average of 1 min for each image.


O. Trujillo, C. L. Griffis, Y. Li., and M. F. Slavik

Registro ISSN




SNIES Categoría


Fecha de publicación 01 de junio de 2012
Fecha de aceptación 01 de mayo de 2012
Medio indexado (nombre)

Revista de Ingenierías de Universidad Antonio Nariño: IngeUAN

Información de apoyo a la difusión
Documentos IngeUAN

Información de contacto

Contacto de Publicaciones